xy=repeated y timesx⋅x⋯x⋅x
this can be expressed more formally with a recursive definition
x⋅xy=xy+1
x1=x
x1=x is very intuitive, however, from these simple definitions, one can show that x0=1:
x⋅x0=x1=x
the only multiplicative identity there is (in R) is 1, so x0=1
you can show that xa⋅xb=xa+b easily by using the informal definition:
xa⋅xb=repeated a timesx⋅x⋯x⋅x⋅repeated b timesx⋅x⋯x⋅xrepeated a+b times=xa+b
however, proving it formally is harder
xy=x⋅xy−1
xa⋅xb=xa−1⋅x⋅xb=xa−1⋅xb+1
inductively,
xa⋅xb=xa−n⋅xb+n
when n=a,
xa⋅xb=xa−a⋅xb+a=x0⋅xb+a=1⋅xb+a=xa+b
the final property to be shown is that (xa)b=xa⋅b, I actually find this one easier to prove formally than to try to understand it intuitively
(xa)b=xa⋅(xa)b−1
if we multiply both sides by xan,
xan⋅(xa)b=xan⋅xa⋅(xa)b−1=xan+a⋅(xa)b−1=xa(n+1)⋅(xa)b−1
inductively,
xan⋅(xa)b=xa(n+m)⋅(xa)b−m
when n=0,
xa0⋅(xa)b=x0⋅(xa)b=(xa)b=xa(0+m)⋅(xa)b−m=xam⋅(xa)b−m
when m=b,
(xa)b=xam⋅(xa)b−b=xab⋅(xa)0=xab